Proton diffusion in BaZrO3. Ionic temperature was controlled by signifies of a single-chain Nos Hoover thermostat at a frequency of 9 THz, substantially lower than the characteristic frequencies of protons within this material (see Figure S8 within the Supporting Information). Equilibrium lattice parameters plus the Poisson ratio have been set making use of the high-temperature experimental values[51] (4.22 and 0.237, respectively). Dopant incorporation required the usage of charged cells to reproduce the appropriate chemistry; as an example, inside the case in the doped technique with chemical formula HBa8Zr4Y4O24, exactly where the sum on the nominal oxidation states equals -3, three electrons were added towards the simulation cell.www.advancedscience.com [1] B. Yildiz, MRS Bull. 2014, 39, 147. [2] H. Aydin, C. Korte, M. Rohnke, J. Janek, Phys. Chem. Chem. Phys. 2013, 15, 1944. [3] W. Shen, J. Jiang, J. L. Hertz, RSC Adv. 2014, 4, 21625. [4] A. Fluri, D. Pergolesi, V. Roddatis, A. Wokaun, T. Lippert, Nat. Commun. 2016, 7, 10692. [5] T. Schober, Solid State Ionics 2003, 16263, 277. [6] H. Li, X. Chen, S. Chen, Y. Wu, K. Xie, Int. J. Hydrogen Power 2015, 40, 7920. [7] X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, Anal. Chem. 2009, 81, 7844. [8] Y. Okuyama, S. Nagamine, A. Nakajima, G. Sakai, N. Matsunaga, F. Takahashi, K. Kimata, T. Oshima, K. Tsuneyoshi, RSC Adv. 2016, 6, 34019. [9] E. Fabbri, A. Magras D. Pergolesi, MRS Bull. 2014, 39, 792. [10] E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Adv. Mater. 2012, 24, 195. [11] K. D. Kreuer, Annu. Rev. Mater. Res. 2003, 33, 333. [12] E. Fabbri, D. Pergolesi, E. Traversa, Chem. Soc. Rev. 2010, 39, 4355. [13] M. A. Laguna-Bercero, J. Power Sources 2012, 203, four. [14] H. Mehrer, P. Fulde, Diffus. Solids 2007, 155. [15] F. Iguchi, T.TL1A/TNFSF15 Protein Species Tsurui, N.SOST Protein web Sata, Y. Nagao, H. Yugami, Strong State Ionics 2009, 180, 563. [16] O. Kosasang, K. Somroop, P. Chindaudom, R. Pornprasertsuk, ECS Trans. 2009, 19, 145. [17] E. Fabbri, D. Pergolesi, S. Licoccia, E. Traversa, Strong State Ionics 2010, 181, 1043. [18] Y. Yamazaki, F. Blanc, Y. Okuyama, L. Buannic, J. C. Lucio-Vega, C. P. Grey, S. M. Haile, Nat. Mater. 2013, 12, 647. [19] M. E. Bj ketun, P. G. Sundell, G. Wahnstr , Phys. Rev. B 2007, 76. [20] K. D. Kreuer, Solid State Ionics 2000, 13637, 149. [21] Q. Chen, A. Braun, A. Ovalle, C.-D. Savaniu, T. Graule, N. Bagdassarov, Appl. Phys. Lett. 2010, 97, 041902.PMID:24238415 [22] Q. Chen, A. Braun, S. Yoon, N. Bagdassarov, T. Graule, J. Eur. Ceram. Soc. 2011, 31, 2657. [23] A. Ottochian, G. Dezanneau, C. Gilles, P. Raiteri, C. Knight, J. D. Gale, J. Mater. Chem. A 2014, 2, 3127. [24] B. Merinov, W. Goddard Iii, J. Chem. Phys. 2009, 130. [25] M. Hanb ken, Strain and Strain in Epitaxy: Theoretical Concepts, Measurements and Applications, Elsevier, Amsterdam 2001. [26] J. E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization, CRC Press Taylor Francis Group, Boca Raton 2007. [27] S. Suresh, L. B. Freund, Thin Film Components: Stress, Defect Formation and Surface Evolution, Cambridge University Press, Cambridge 2006. [28] I. V. Markov, Crystal Growth for Newcomers, Planet Scientific Publishing Co. Pte. Ltd., Singapore 2003. [29] D. Pergolesi, E. Fabbri, A. D’Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, E. Traversa, Nat. Mater. 2010, 9, 846. [30] Y. B. Kim, T. M. G , H.-J. Jung, S. Kang, R. Sinclair, F. B. Prinz, Solid State Ionics 2011, 198, 39. [31] K. Bae, D. Y. Jang, S. M. Choi, B.-K. Kim, J.-H. Lee, J.-W. Son, J. H. Shim, Thi.