ID: 103973. 8. Lee I. Nucleophilic Substitution at a Carbonyl Carbon Atom. Aspect
ID: 103973. 8. Lee I. Nucleophilic Substitution at a Carbonyl Carbon Atom. Portion II. CNDO/2 Research on Conformation and Reactivity from the Thio-Analogues in the Thio-Analogues of Methyl Chloroformate. J. Korean Chem. Soc. 1972; 16:33440.Can Chem Trans. Author manuscript; readily available in PMC 2014 Might 06.D’Souza et al.Page9. Bentley TW, Harris HC, Ryu ZH, Lim GT, Sung DD, Szajda SR. Mechanisms of cIAP-1 Inhibitor Compound Solvolyses of Acid Chlorides and Chloroformates. Chloroacetyl and Phenylacetyl Chloride as Similarity Models. J. Org. Chem. 2005; 70:8963970. [PubMed: 16238334] ten. Salvatore RN, Yoon CH, Jung KW. Synthesis of Secondary Amines. Tetrahedron. 2001; 57:77857811. 11. Yeom C-E, Kim YJ, Lee SY, Shin YJ, Kim BM. Efficient Chemoselective Deprotection of Silyl GlyT2 Inhibitor Synonyms Ethers Employing Catalytic 1-Chloroethyl Chloroformate in Methanol. Tetrahedron. 2005; 61:1222712237. 12. Heller ST, Schultz EE, Sarpong R. Chemoselective N-Acylation of Indoles and Oxazolidinones with Carbonylazoles. Angewandte Chemie Int. Ed. 2012; 51:8304308. 13. Queen A. Kinetics of the Hydrolysis of Acyl Chlorides in Pure Water. Can. J. Chem. 1967; 45:1619629. 14. Crunden EW, Hudson RF. The Mechanism of Hydrolysis of Acid Chlorides. Element VII. Alkyl Chloroformates. J. Chem. Soc. 1961:3748755. 15. Green M, Hudson RF. The Mechanism of Hydrolysis of Acid Chlorides. Part VIII. Chloroformates of Secondary Alcohols. J. Chem. Soc. 1962:1076080. 16. La S, Koh KS, Lee I. Nucleophilic Substitution at a Carbonyl Carbon Atom (XI). Solvolysis of Methyl Chloroformate and its Thioanalogues in Methanol, Ethanol and Ethanol-Water Mixtures. J. Korean Chem. Soc. 1980; 24:1. 17. La S, Koh KS, Lee I. Nucleophilic Substitutions at a Carbonyl Carbon Atom (XII). Solvolysis of Methyl Chloroformate and its Thioanalogues in CH3CN-H2O and CH3COCH3-H2O Mixtures. J. Korean Chem. Soc. 1980; 24:84. 18. Orlov SI, Chimishkyan AL, Grabarnik MS. Kinetic Relationships Governing the Ethanolysis of Halogenoformates. J. Org. Chem. USSR (Engl. Transl.). 1983; 19:1981987. 19. Kevill DN, Kyong JB, Weitl FL. Solvolysis-Decomposition of 1-Adamantyl Chloroformate: Evidence for Ion Pair Return in 1-Adamantyl Chloride Solvolysis. J. Org. Chem. 1990; 55:43044311. 20. Kevill DN, D’Souza MJ. Concerning the Two Reaction Channels for the Solvolyses of Ethyl Chloroformate and Ethyl Chlorothioformate. J. Org. Chem. 1998; 63:2120124. 21. Kevill DN, Kim JC, Kyong JB. Correlation in the Rates of Solvolysis of Methyl Chloroformate with Solvent Properties. J. Chem. Res. Synop. 1999:15051. 22. Kyong JB, Kim YG, Kim DK, Kevill DN. Dual Pathways within the Solvolyses of Isopropyl Chloroformate. Bull. Korean Chem. Soc. 2000; 21:66264. 23. Kyong JB, Yoo JS, Kevill DN. Solvolysis-Decomposition of 2-Adamantyl Chloroformate: Evidence for Two Reaction Pathways. J. Org. Chem. 2003; 68:3425432. [PubMed: 12713342] 24. Kyong JB, Won H, Kevill DN. Application in the Extended Grunwald-Winstein Equation to Solvolyses of n-Propyl Chloroformate. Int. J. Mol. Sci. 2005; six:876. 25. Bentley TW. Structural Effects around the Solvolytic Reactivity of Carboxylic and Sulfonic Acid Chlorides. Comparisons with Gas-Phase Information for Cation Formation. J. Org. Chem. 2008; 73:6251257. [PubMed: 18630963] 26. Kevill DN, D’Souza MJ. Sixty years of the Grunwald-Winstein Equation: Development and Recent Applications. J. Chem. Res. 2008; 2008:616. 27. D’Souza MJ, Reed DN, Erdman KJ, Kevill DN. Grunwald-Winstein Evaluation sopropyl Chloroformate Solvolysis Revisited. Int. J. Mol. Sci. 2009; ten:86279. [PubMed: 19.