Are incapable of extending exercise-induced lifespan extension in rats [22]. Exercise-induced reactive
Are incapable of extending exercise-induced lifespan extension in rats [22]. Exercise-induced reactive oxygen species itself are known to increase endogenous reactive oxygen species defense capacity in skeletal muscles [22,23] and antioxidant supply may prevent the induction of molecular regulators of endogenous antioxidant defense in the skeletal muscles during exercise. But the results of this study showed that the exercise group had increased levels of oxidative stress. Moderate levels of reactive oxygen species in any tissue are PubMed ID:https://www.ncbi.nlm.nih.gov/pubmed/28827318 necessary for the normal homeostatic process but excessive production causes oxidative stress. With increased intensity and prolonged exercise, a skeletal muscle mitohormesis process might have been suppressed to cause increased oxidative stress. Accumulated reactive oxygen species during prolonged exercise might have enhanced oxidative damage in skeletal muscles as the muscle proteins are highly redox sensitive [24?6]. The exercised group showed positive results in the present study, which concurs with previous studies thatexercise certainly had a significant role in inducing oxidative stress. Antioxidant supplementation had also shown a significant impact on lipid peroxidation in highly trained athletes or over-trained athletes, and also had helped to increase the antioxidants level in intermittent players [19, 26?9]. Chiang and Chang [30] reported antioxidant properties of Pleconaril chemical information caseins and whey proteins in colostrum. Colostrum contains significantly higher quantities of antioxidants which is very crucial for health to protect against oxidative stress in infants. It is known that at birth, the newborns will go through many challenges and one such challenge is adaptation to the oxygen-rich environment compared to the low-oxygen intrauterine environment [31?3]. However, this situation may be overcome by the generation of excessive reactive oxygen species [ROS]. Colostrinin [CLN] is a complex of proline rich polypeptide derived from bovine colostrum, which induces mitogenic stimulation as well as cytokines in human peripheral blood leucocytes and it also possesses antioxidant activity in pheochromocytoma [PC1] cells [1, 31, 34]. Our results showed that there was severe oxidative stress after exercise in mice which was supported by an increased level of lipid hydroperoxides and xanthine oxidase and a reduced total antioxidants and superoxide dismutase. Observed severe oxidative stress in skeletal muscles after exercise is in agreement with earlier reports. Many studies have reported that exercise increases free radicals accumulation in skeletal muscles and this will result in increased release of the antioxidant enzymes into circulation [21, 22, 35]. There will be increased formation of protein carbonyl compounds which are the markers of lipid peroxidation indicating severe oxidative stress within skeletal muscles [36]. Few studies have shown that higher concentrations of antioxidants instead of protecting skeletal muscles against oxidative stress, increases oxidative damage during exercise. Higher concentrations of antioxidants are reported to eliminate the reactive oxygen species which normally play an important role in the regulation of redox sensitive muscle proteins during muscle contractions [26, 27]. But the results of this study demonstrated that concurrent colostrum treatment was able to improve the total antioxidant levels and increase the skeletal muscle superoxide dismutase level and reduce the lipid hy.